【炼丹技巧】功守道:NLP中的对抗训练 + EBET易博官方网站PyTorch实现

  新闻资讯     |      2023-08-16 07:29

  在GLUE榜上超越了Facebook原生的Roberta,追一科技也用到了这个方法仅凭单模型 [2] 就在CoQA榜单中超过了人类,似乎“对抗训练”一下子变成了NLP任务的一把利器。刚好笔者最近也在看这方面的内容,所以开一篇博客,讲一下。

  提到“对抗”,相信大多数人的第一反应都是CV中的对抗生成网络 (GAN),殊不知,其实对抗也可以作为一种防御机制,并且经过简单的修改,便能用在NLP任务上,提高模型的泛化能力。关键是,对抗训练可以写成一个插件的形式,用几行代码就可以在训练中自由地调用,简单有效,使用成本低。不过网上的大多数博客对于NLP中的对抗训练都介绍得比较零散且无代码实现,笔者在这篇博客中,对NLP任务中的对抗训练做了一个简单的综述,并提供了插件形式的PyTorch实现。

  本文专注于NLP对抗训练的介绍,对对抗攻击基础感兴趣的读者,可以看这几篇博客及论文 [3] [4] [5],这里就不赘述了。不想要理解理论细节的读者也可以直接看最后的代码实现。

  我们常常会听到“对抗样本”、“对抗攻击”、“对抗训练”等等这些令人头秃的概念,为了让大家对“对抗”有个更清晰的认识,我们先把这些概念捋捋清楚。

  Szegedy在14年的ICLR中 [6] 提出了对抗样本这个概念。如上图,对抗样本可以用来攻击和防御,而对抗训练其实是“对抗”家族中防御的一种方式,其基本的原理呢,就是通过添加扰动构造一些对抗样本,放给模型去训练,以攻为守,提高模型在遇到对抗样本时的鲁棒性,同时一定程度也能提高模型的表现和泛化能力。

  GAN之父Ian Goodfellow在15年的ICLR中 [7] 第一次提出了对抗训练这个概念,简而言之,就是在原始输入样本x上加一个扰动r_{adv},得到对抗样本后,用其进行训练。也就是说,问题可以被抽象成这么一个模型:

  其中,y为gold label,\theta为模型参数。那扰动要如何计算呢?Goodfellow认为,神经网络由于其线性的特点,很容易受到线性扰动的攻击。

  其中,\text{sgn}为符号函数,L为损失函数。Goodfellow发现,令\epsilon=0.25,用这个扰动能给一个单层分类器造成99.9%的错误率。看似这个扰动的发现有点拍脑门,但是仔细想想,其实这个扰动计算的思想可以理解为:将输入样本向着损失上升的方向再进一步,得到的对抗样本就能造成更大的损失,提高模型的错误率。回想我们上一节提到的对抗样本的两个要求,FGSM刚好可以完美地解决。

  在 [7] 中,对抗训练的理论部分被阐述得还是比较intuitive,Madry在2018年的ICLR中 [8]总结了之前的工作,并从优化的视角,将问题重新定义成了一个找鞍点的问题,也就是大名鼎鼎的Min-Max公式:

  该公式分为两个部分,一个是内部损失函数的最大化,一个是外部经验风险的最小化。

  Madry认为,这个公式简单清晰地定义了对抗样本攻防“矛与盾”的两个问题:如何构造足够强的对抗样本?以及,如何使模型变得刀枪不入?剩下的,就是如何求解的问题了。

  以上提到的一些工作都还是停留在CV领域的,那么问题来了,可否将对抗训练迁移到NLP上呢?答案是肯定的,但是,我们得考虑这么几个问题:

  首先,CV任务的输入是连续的RGB的值,而NLP问题中,输入是离散的单词序列,一般以one-hot vector的形式呈现,如果直接在raw text上进行扰动,那么扰动的大小和方向可能都没什么意义。Goodfellow在17年的ICLR中 [9] 提出了可以在连续的embedding上做扰动:

  乍一思考,觉得这个解决方案似乎特别完美。然而,对比图像领域中直接在原始输入加扰动的做法,在embedding上加扰动会带来这么一个问题:这个被构造出来的“对抗样本”并不能map到某个单词,因此,反过来在inference的时候,对手也没有办法通过修改原始输入得到这样的对抗样本。我们在上面提到,对抗训练有两个作用,一是提高模型对恶意攻击的鲁棒性,二是提高模型的泛化能力。在CV任务,根据经验性的结论,对抗训练往往会使得模型在非对抗样本上的表现变差,然而神奇的是,在NLP任务中,模型的泛化能力反而变强了,如[1]中所述:

  因此,在NLP任务中,对抗训练的角色不再是为了防御基于梯度的恶意攻击,反而更多的是作为一种regularization,提高模型的泛化能力。

  有了这些“思想准备”,我们来看看NLP对抗训练的常用的几个方法和具体实现吧。

  实际上就是取消了符号函数,用二范式做了一个scale,需要注意的是:这里的norm计算的是,每个样本的输入序列中出现过的词组成的矩阵的梯度norm。原作者提供了一个TensorFlow的实现 [10],在他的实现中,公式里的x是embedding后的中间结果(batch_size, timesteps, hidden_dim),对其梯度g的后面两维计算norm,得到的是一个(batch_size, 1, 1)的向量g_2。为了实现插件式的调用,笔者将一个batch抽象成一个样本,一个batch统一用一个norm,由于本来norm也只是一个scale的作用,影响不大。笔者的实现如下:

  PyTorch为了节约内存,在backward的时候并不保存中间变量的梯度。因此,如果需要完全照搬原作的实现,需要用register_hook接口[11]将embedding后的中间变量的梯度保存成全局变量,norm后面两维,计算出扰动后,在对抗训练forward时传入扰动,累加到embedding后的中间变量上,得到新的loss,再进行梯度下降。不过这样实现就与我们追求插件式简单好用的初衷相悖,这里就不赘述了,感兴趣的读者可以自行实现。

  内部max的过程,本质上是一个非凹的约束优化问题,FGM解决的思路其实就是梯度上升,那么FGM简单粗暴的“一步到位”,是不是有可能并不能走到约束内的最优点呢?当然是有可能的。于是,一个很intuitive的改进诞生了:Madry在18年的ICLR中[8],提出了用Projected Gradient Descent(PGD)的方法,简单的说,就是“小步走,多走几步”,如果走出了扰动半径为\epsilon的空间,就映射回“球面”上,以保证扰动不要过大:

  在[8]中,作者将这一类通过一阶梯度得到的对抗样本称之为“一阶对抗”,在实验中,作者发现,经过PGD训练过的模型,对于所有的一阶对抗都能得到一个低且集中的损失值,如下图所示:

  我们可以看到,面对约束空间\mathcal{S}内随机采样的十万个扰动,PGD模型能够得到一个非常低且集中的loss分布,因此,在论文中,作者称PGD为“一阶最强对抗”。也就是说,只要能搞定PGD对抗,别的一阶对抗就不在线. 实验对照

  。不过,根据我们使用的经验来看,是否有效有时也取决于数据集。毕竟:缘,妙不可言~EBET易博